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New Interpretations: 
Molecular Weight Averages for a Polymer 

c .  w. PYUN 

Department of Chemistry 
University of Lowell 
Lowell, Massachusetts 

and 

HERSHEL MARKOVITZ 

Department of Chemistry 
Carnegie- Mellon University 
Pittsburgh, Pennsylvania 

A B S T R A C T  

The statement i s  often made in theJolymer - literature, without 
proof, that 2 Mw 2 where M M , and a r e  the z-, 

Z n’ 2’ w n 
weight-, and number-average molecular weights respectively. 
Four proofs of a generalization of these inequalities a r e  given. It 
i s  shown that a higher-order molecular weight average is larger 
than a lower-order one, regardless of the form of the molecular 
weight distributions, except for the case when all the molecules 
have the same molecular weight. A brief discussion of the 
viscosity-average molecular weight i s  also included. 
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890 PYUN AND MARKOVITZ 

INTRODUCTION 

It is widely recognized [ l a ]  that the weight-average molecular 
weight of a polymer is always larger than the number-average 

molecular weight .z , and the z-average molecular weighlt Mz is in 
turn larger than 
made to numerical examples for specific simple distributions. Some- 
times, appeal is made to the intuition, for example, that is larger 

than since high molecular weight portions of a molecular weight 
distribution get more weighting in calculating than in @ Rarely 

does the proof appear in polymer texts, despite i ts  fundamental im- 
portance in polymer science. (The work by Fujita [ 21 is the only 
such book in which w e  saw such a proof.) 

order molecular weight average is larger than a lower-order 
average. Which of the derivations would be most suitable for a 
given student would depend on his mathematical background. The 
strict  inequality holds for any molecular weight distribution except 
for the trivial case when all the molecules in the polymer have the 
same molecular mass. In the latter case, there is no need for 
averaging, and all the molecular weight averages are equal to each 
other. 

W 

n 
W' 

and so on. For justification, appeal is often 

W 

n 
W n' 

In this article, we present four different proofs that a higher- 

K - T H - O R D E R  AVERAGE M O L E C U L A R  W E I G H T  

The k-th-order average molecular weight (M) of a polymer k may be defined by the relation 

k- 1 k =  1, 2 , .  . . k 
= xi Mi N i / C i  Mi Ni 

where N. is the number of molecules (or moles) of the i-th molecular 

weight species whose molecular weight is M. and m is the total num- 
ber of different molecular weight species. To simplify the notation 
all summations C . and C.  in this communication, it may be assumed, 

1 J 
extend over all  values of the index i or j, unless otherwise indicated. 

Low-order average moIecular weights have special names and 

1 

1 
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NEW INTERPRETATIONS 89 1 

symbols: (M) = n , (M) = , (M) = k , etc. The inequality to 

be proved i s  
1 n  2 w  3 z  

It is readily seen that a special case of Eq. (2) i s  the oft-quoted 
ordering: 

The strict  inequality holds if there are two o r  more molecular weight 
species (m 2 2), and the equality holds in the trivial case of only one 
fraction (m = 1). 

P r o o f  A 

Perhaps the shortest proof of relation (2) i s  made through the use 
of the Cauchy-Schwarz inequality [ 3, 41. 

which i s  valid for any real values of a. and b.. If the substitutions 
1 1 

k + l  1/2 
ai = (Mi Nil 

k -  1 1/2 
b i =  (Mi Nil  

a r e  made into Eq. (3), one obtains 

Since each sum in Eq. (5) i s  positive, it may be rearranged to give 

C ~ M ~  k +  1 N ~ / z ~ M ~  k N~ 2 C ~ M ~  k N ~ / z ~ M ~ -  l ~ i  

(4) 

which, in view of the definition (1) proves relation (2). 
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892 PYUN AND MARKOVITZ 

The equality sign in the Cauchy-Schwarz inequality holds only if 
a. = cb. (i = 1, 2, ..., m) where c i s  a constant [ 41. With the ai and 

b. given by Eq. (4), this condition reads c = Mi and c cannot be a 

constant except when there is only one species (m = 1). 

1 1  

1 

P r o o f  B 

Perhaps, the most direct proof of relation (2), requiring only 
differential calculus, is made by showing that the f i rs t  derivative of 
(M)k with respect to k is positive. Here, we regard k a s  a continu- 

ous variable temporarily and also assume that m 2 2. Differentia- 
tion of Eq. (1) yields: 

d(M)k/dk = X.C.A../(CiMi k - 1  Nil 2 
1 J 11 

where 

k - 1  k - 1  A.. = ( M ~  N.M N . )  M~ In (M~/M~) 
4 1 j  J 

The double sum of Aij, which occurs in the numerator of Eq. (7), 

may be rewritten a s  

noting that Aii = 0. Now, from Eq. (8) it is seen that 

k -  1 k - 1  A .  + A.. = Mi N M 
il 11 i j  I 

Nj (Mi - M.) In (Mi/Mj) 

j’ 
Shce  M. # M we have, for any combination of Mi and M 

1 j’ 

(M - M.) In ( M ~ / M ~ )  > 0 
i 1  

(7) 

(It is interesting to note that Eq. (11) is the inequality used in 
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NEW INTERPRETATIONS 893 

deriving Boltzmann's H- theorem [ 5, 61 .) NOW, returning to Eq. (7), 
we see that we have just shown that the numerator on the right-hand 
side is positive. Since the denominator i s  also clearly positive, we 
have 

d(M)k/dk > 0 (12) 

which indicates that (M)k is a monotonically increasing function of k 

when m z 2 in Eq. (1) and therefore relation (2) is proved (even in 
the case when k i s  not limited to integral values). 

P r o o f  C 

This is probably the most elementary of the four proofs. First, 
we define 

N ~ / C ~ M ;  - N~ k = l , 2 ,  . . .  (13) 
(k -  1) - k- 1 

- Mi 'i 

and note that q. (k- ') thus introduced i s  positive and satisfies the 

normalization condition: 
1 

For k = 1, we have q."), which is a normalized number (or molar) 

distribution of the molecular weight, and for k = 2, we have q i 
which i s  a normalized weight (or mass) distribution of the molecular 
weight. 

f 0110 ws: 

(1) 1 

(k -  1) as 
i Now (M)k and (M)k+l  may be written in terms of q 

(M) = CiMiqi k 

(M) + = CiMi 2 qi/CiMiqi 

where we have dropped the superscript (k - 1) from q. for simplicity. 
The variance of q. is positive, i.e., 1 
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894 

which may be rewritten a s  

Dividing both sides by CiMiqi ( > O), we obtain 

2 
CiMi qi/CiMiqi 2 CiMiqi 

PYUN AND MARKOVITZ 

(16) 

In view of Eqs. (15), this is equivalent to reIation (2). 

V I S C O S I T Y - A V E R A G E  M O L E C U L A R  WEIGHT 

For polymers, there i s  another class of molecular weight averages 
called the viscosity-average molecular weight p [ 71. 
fined by 

This is de- a 

where a i s  the exponent appearing in the Mark-Houwink relation for 
the limiting viscosity number or  intrinsic viscosity of polymer chains 
in solution. The value of a depends on the polymer, the solvent, and 
the temperature. It usually falls between 0.5 and 1.0 for uncharged 
flexible polymer chains. For polyelectrolytes in the absence of 
supporting electrolytes, i t  may come close to 2, which is also the 
value approached in the case of rigid rod-shaped macromoleculeg 

The viscosity-average molecular weight p defined by Eq. (19) 
1 1bI - 

(1) a 
is a generalized mean molecular weight of order a with qi 

= M.N./Z.M.N. used a s  the weighting function [ 4, 8, 91. The gener- 

alized mean p is a monotonically increasing function of a, and w e  
have 

1 1  1 1 1  

a 

MI 5 pa 5 Mm 

and 
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NEW INTERPRETATIONS 895 

lim pa = Mm 
a-* 

where M1 and M 

in the polymer. 

least at  two points: 

a r e  the smallest and the largest molecular weights m 

A s  i s  well recognized [ 1, 91 pa and (M)k coincide with each other a t  

which can easily be seen by substituting a = -1 and a = 1 into Eq. (19) 
and comparing them with Eq. (1). We also note that the generalized 
mean becomes the root mean square for a = 2, the square mean root 
for a = 1/2. It approaches the geometric mean as a approaches 
zero [ 4, 81. 

P r o o f  D 

In the preceding section, we have noted that with the weighting 

function q (l), we have p = (M)Z and p = (M)l. Since the gener- 

alized mean p is a monotonically increasing function of a for any 

distribution, we have (M) > (M)l immediately [9]. If we take the 

generalized mean molecular weight of order +1 and -1 with q (k) of 

Eq. (13) a s  the weighting function we get 

i 1 -1 

a 
2 -  

i 

Since p > p-l for any distribution, we have Eq. (2) again. 1 -  
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896 PYUN AND MARKOVITZ 

CONCLUDING R E M A R K S  

In the above, we have used discrete molecular weight distribution 
functions. It i s  often more convenient to use a continuous distribution 
function which is a good approximation to the inherently discrete 
molecular weight distribution of a polymer. We omit, however, the 
proofs of relation (2) in terms of the continuous moIecular weight 
distribution function since they closely parallel the proofs using the 
discrete distribution function. 

In summary, we note the following for any nontrivial (m 2 2) 
molecular weight distribution: (a) the k-th-order average molecular 
weight (M)k is defined for positive k and 

creases; (b) the viscosity-average molecular weight pa i s  defined for 

a limited but continuous range of a and p increases as a becomes 

larger; (c) (M)k and p coincide a t  least at two points: I J - ~  = (M) 

and p = (M) 2, if the range of a is extended. 

increases as k in- 

a 
a 
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